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ON THE CYCLIC BEHAVIOR OF RANDOM TRANSFORMATIONS

ON A FINITE SET

by
Alan E. Gelfand

1. Introduction

Let X - {xlx 2 ,...,xn be a set of n elements and let

.3 be the set of all transformations from X into itself. For

T c,9 we take Tk to have itu usual meaning. Suppose for any

x c X we look at the sequence TJx , J - 0,1,2,... (TOx = x)
Since X is finite, given an arbitrary initial element, the

sequence TJ must eventually encounter an element it had shown

before. Doing so, it must thereafter repeat the intermediate

sequence of elements. Such a sequence of elements is called a

cXcle. The number of distinct elements in the cycle is called the

cycle length. For a given x and a given T there will thus be

one and only one cycle, say of length r (which we may call the

cycle associated with x ). Then for any x' on this cycle

TmrX' X1 P m 0,i,2,...

But for a given T not all elements in X must be on a cycle.

Some elements may be transient in that they occur during a run-in

period prior to T falling into a cycle. Moreover, starting from

differing x's may lead T to fall into differing cycles, i.e.

there may be many cycles associated with T . This leads to the

notion of a cycle space for T . The number of cycles is obviously
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between 1 and n as is the number of cyclic elements (i.e.,

elements on some cycle).

For the transformation T with n - 10 given by

x x1 x 2  x 3  x 4  X5  X6  x7  X8  X9 X1 0

Tx x5 X8  xi x8  X 9  x6 x1 0  x4  1 X9

we may graphically describe the cycle space as

+
x x1 4 x8

x7  10 X9 x

It is the purpose of this paper to develop a collection of

results which effectively describe the cycle space of a randomly

selected T . The application of these results to the study of

systems having a finite number of states is apparent and for this

reason we will use the term "state" interchangeably with the term

"element. "

The extant literature in this area is quite limited. Gontcharoff

in some early work considers the distribution of cycles in permuta-

tions of a finite number of elements. Rubin and Sitgreaves, in a

very long and detailed article, consider some aspects of the cycle

space without formally recognizing it. Harris extends their work

and includes some results discussed here but obtained from a differ-

ent point of view. Katz and his student, Folkert, examine the
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expected number of cycles. Cull studies the problem in a system

setting (in particular, using binary switching nets although to

no particular advantage) and develops some results (with a few

errors) on the expected number of cycles and cyclic states.

Our format, then, is as follows. In section 2 we formalize

the problem developing convenient notation and definitions. In

section 3 we introduce random transformations. In section 4 we

demonstrate the advantage of viewing the problem in terms of

square arrays of row-exchangeable variables. In section 5 we offer

exact results for fixed n and In section 6 we present some

attractive asymptotic results.

2. The Setup

Consider again a finite set X with elements XiX2,...,x n

Any transformation T cY from X into itself may be given a

matrix representation through an nxn transition matrix which we

shall also denote by T . That is

[1 if state xt Is the successor to state xj ,

i.e. Txj a xt

J " 0 otherwise.

By definition T has exactly one "l" per column. Suppose

T results in a cycle space having k transient elements and m

cycles of lengths r1 ,r2 ,r3 ,...,r m , respectively. Consider the

characteristic polynomial of T , IT - )II where operations are
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performed in the real field. It is straightforward to show that

this polynomial will have the form

+ X t R-1

(see Cull for further details).

In the T matrix we can see that we have Tii 1 i.f.f.

state i is on a cycle of length 1. Thus Tr(T) gives the number

of elements on cycles of length 1. Extending this notion it is

apparent that

(1) Tr(Tm ) s number of states on cycles whose length divides m

Hence Tr(T n ) equals the number of states on cycles and

n - Tr(T n ! ) equals the number of transient states.

It is of interest to obtain a matrix Am from T such that

Tr(Am ) - number of states on cycles whose length is exactly m

Let

Cm - (primes < m which appear in the prime representation of m)

(i.e. appear with a power > 1)

and let

Nm  number of elements in Cm
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N
The number of subsets of Nm is 2 and the number of subsets

N
of size k is (km ) - Nm . At a given k let a index the

subsets of size k so that the 2 i subsets may be denoted by

C , k = Ol,2,...,N j a 1,2,..., Nmk . Let gk equal m

dived by the product of all the elements in Ckj * Then

Theorem. For each m , m a 1,2,...,n , let

Nm  Nmk

(2) A m Z (I)k Z T kJ
m k=O j

Then Tr(A m ) = number of states on cycles whose length is

exactly m

Proof. The most direct proof employs a straightforward, but

tedious, inclusion-exclusion argument.

3. Random Transformations.

Consider now the selection of a random (equally likely) trans-

formation T from Y . This selection is conveniently accomplished

as a sequence of n independent multinomial trials where the jth

trial chooses the successor to state J in an equiprobable fashion

from amongst the n elements in X . This approach clearly results

in an equiprobable selection of the nn elements in .

Then Tr(T) , the number of states on cycles of length 1, is
1

obviously distributed as binomial (n, 1) with E(Tr(T)) - 1 ,

var(Tr(T)) = (n-l)/n . The probability that T has no cycles of
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length 1 is ((n-1)/n)n ; the probability that state i is a successor

state is I-((n-l)/u)n  As n * - these probabilities tend to
-I -I

e and 1 - e , respectively. More generally the limiting dis-

tribution of Tr(T) is Poisson (1).

We now examine the nature of the cycle space of a random

transformation. In particular, we pose the following questions.

(1) What is the probability that state xi is on a cycle of

length r ?

(ii) What is the Joint probability that state xi is on a

cycle of length r and state xj is on a cycle of

length s ?

(Iii) What is the expected number of cycles of length r and

the expected number of states on cycles of length r ?

(iv) What is the distribution of the number of cycles of

length r and of the number of states on cycles of

length r ?

(v) What is the Joint distribution of the number of cycles of

length r and the number of cycles of length s ? of the

number of states on cycles of length r and the number of

states on cycles of length s ?

(vi) What is the expected number of cycles and the expected

number of states on cycles?

(vii) What is the distribution of the number of cycles and of

the number of states on cycles?

(viii) What is the expected length of a cycle?
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In what follows we shall provide exact or asymptotic answers

to all of these questions. Some aspects of this distribution theory

(e.g. (iv), (vii) and (viii)) have been studied by Rubin and

kSitgreaves and by Cull. However, the distribution of Tr(T ) and

Tr(Am) as in (1) and (2) are extremely difficult to examine

directly. In the next section we will show how an approach using

a sequence of square arrays can be employed advantageously in

answering the above questions.

4. Square Arrays.

For a set X of n elements and T selected at random from

~J consider the nxn array of random variables.

D n D n
11.........n
n n
D 21 2n

Dr n 1i state *xi is on a cycle of length r

From this array we are interested in the following variables.

= £Dn -nme

(4) Sn,r number of states on a cycle of length r
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(5) Tn,r  S n,r/r = number of cycles of length r

(6) n _ E Dn 1 if state x is on a cycle

( r-l ri 0 otherwise

n n(7) U - Z S - C  -number of states on cycles

n
(8) VT = T number of cycles.

n  r!l n,r

Note that while a row sum (S n,r ) may exceed 1, by definition

the column sums (C ) are still 0-i random variables. In fact,

P(Cn_ 0) is the probability that state I is transient.

For any fixed r the Joint distribution of Dn ,...,Dn or
rl. rn

of any subset will be that of a collection of dependent interchange-

able random variables. The marginal distribution of any Dn is
ri

given by

(9) P(Dn = 1) - P(state x is on a cycle of length r)

(n-1i (r-1) ! 1i 1 (n) r

nr n nr

where (n)r  is the falling factorial of r terms starting at nrn

Thus we immediately have E(Dn ) and var(Dn) and may note that
ri ri

as n . - both tend to 0.

We can immediately obtain the expectation of the variables in

(4) through (8), i.e.

(10) I(S n,r ) (n)r/nr
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(11) E(T (n A 1 r
nr r r

(12) E(Cn) n - (n)r/nr

n
(13) E(Un ) - £ (n)/nr

k-I

n
(14) E(Vn) U E 1 (n)rA r

ri r

The limits of (10) and (11) are clearly 1 and /r ,

respectively. By truncating the sums at arbitrary m and letting

n - a , the limits in (13) and (14) are both seen to be a For

(12) the limit is 0 , i.e. fixing m < n we have

n (n) r 1 m-l (n) r (n)m n n-m r-m- --r- n _~ r m+l n ---
n rl n -n ii n n rum

n-mr-mm

ml (n) (n) 1 - (n-m)n-m+l

-ni-i nr n m +l 1 - (n-n)
n

m-i (n) r (n)m mn -m+l

-i£ - _ (1 _ S_
-n i nr mnm n

As n * the right-hand side approaches (I - em) But

m is arbitrary so that the limit of the left-hand side must be 0

The interpretation of these limits is that (i) the probability

of any particular state being on a cycle tends to 0 with increas-

ing number of states, but (Ii) the expected number of cyclic states

and expected number of cycles tends to - with increasing number of

states.
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Consider the joint distribution of any pair, Dni D n
ri sj

We have three cases: (i) r # s , i # j , (ii) r - s , £ J

(iii) r # s , i a J

For i) we have

r +(
(15) P(D1 ()r+s , r + < n

ri sj

0 r + s > n

For (ii) we have

1(r-) (n)r + 1 2n)2r

(16) P(Dn 1 , 1 n) nr n(n-l) 2r ,2r<n

ri r
(r-1) (n)r 2rn(n-l) n r r

For (iii) we have two exclusive events so that

n Dn i

(17) P(D i . 1 , D si . 1) 0

In each case using (9) we may obtain expressions for the three

remaining joint events.

Continuing we have in case (i)

f 1 (n)r+s 1 (n)r(n)s
(18) cov(Di , D n n(n-l) nr+s n2 n n

I (n) r(n)s8r+

n2  nr + s +s n
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in case (ii)

(nr-1 1 (1 (n) 2

nn- n n(n-1) r n(n-T Tn- n2r ,2r < n
(19) cov(Dn -) a 1 n

(r-1) r r
n(n-l) r n n2 r  ,2r > n

and in case (iii)

' n n ). 1 (n)r(n)s(20) cov(D ,D r

r 81 n2 nr+

In all cases these covariances tend to 0 as n * - , a fact

which could be inferred without computation from the Cauchy-Schwarz

inequality and (9).

Hence

(n)r~ (n) (n)s

(21) co(SnrSn)r+S r+S r s r + s n

~(n)r(n) s sr s ,r + s > n

(22) cov(TnrT',s ) a c cov(SnrSn s )

r n + 2r r  V 2r
(23) var(S n, r )  r -n- - 2 2r

r (n)r [(n)r 2
nr n2r , 2r n

1)
(24) var(Tn,r ) - -2 var(Sn r )

r-



nfl 2 n(n) i n (n) r2(25) cov(CC) n- E (r7l r (Er-)isl n n~-l r.1 nr

(26) va U' r ! _r
rul n 12 r1

n (n) n (ni) 2
(27) var(U n) * E (2r-1) r~ r ( rr.

r-l n rul nl

(28) var(V ) (n ~'r n 1 nr 1 (n)__n r r r+ s ~
rmlr n r rl rnr r,s>l r n s

r+s:Zn

From these expressions it is clear that Sn and S s
(also T nrand T ns) are always negatively correlated but

amptotically uncorrelated. Also lim var(S r r
s y n s - O Dn , r

lim var(T )~ 1/hr. It is also apparent that lim var(C) 1.

and thus that urn C*OV(Cn C n) _ 0 .Finally, var(U )and var(V)

both tend to - as n * ,as will be most easily seen from results

in section 6.

Extending cases (i), (ii) and (iii) above, consider any subset

of size m of the D * Suppose first that all mn variables areri
in the same row of (3). Taking mr < n and recognizing the exchange-

ability of the variables, we seek

P D D(~ *- . 1)n,m,r a~ r 2  a~

*P(states x a 'Xc a ..49xa are each on a cycle of

length r).
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To obtain an expression for this probability, consider all

possible partitions of m with no part greater than r . If a

given partition has parts ml,...,mj , let n(ml,...,mij) be the

number of ways to allocate m distinct objects into J like cells

with mi in cell i (£ i a m) . Also associate with

mi1,r 2 ,,m 3  the event Anr(mix,...,mJ) defined by (states

Xa ,...,x 0  on the same cycle of length r , states x ,
1 a 1  m1 +1

x on the same cycle of length r , etc.). If A_ is the

1 2

set of all partitions of m and 0-,r is the set of all partitions

of m with no part greater than r , then

(29) Pn,m,r - n(ml'...'mi) P(Anr(ml,m2,..,mj

with

(30) P(An ml 2 ' ' m )) " ( n ) r  n - J r  [ (r-1) .]J [ l ( r - m  ) !1 1

~ (nr(mm,...i 'm T 1 sjr i u

Using (29) with appropriate subsets of size m-1 , we may in

principle obtain'the complete joint distribution of the m D n

If on the other hand the m Dn  are all in the same column of
ri

(3), say Dl '...,Dnml , in accordance with (17) their joint dis-i (n),
tribution will be multinomial with associated P 0 - -n

Extending the above ideas, we may obtain the joint distribution

of any subset of size m of Dri

13



5. Exact Distributions

Returning to the variables in (4) - (8), we have already noted

that is a 0-1 variable with success probability given by (12).

Next we obtain the exact distributions of U f ollowing ideas

given by Rubin and Sitgreaves. Given T , for any x e X , we can

define the set of all successors to x , S(x) , i.e.

S(x) - (x': Trx = x' for some r > 0).

By definition x e S(x) and S(x) includes all the cyclic

states associated with x (although x is, of course, not necessary

cyclic). Then with k > r + 1

P(x has k successors, S(x) has cycle of length r, x is not cyclic)

= P(Tx p x ; T2x 9 Tx , T2x iO x ; T3x P1 T2x , T3x p1 Tx , T3x 0 x ;

Tk-lx Tk- 2 x,...,Tk-lx 0 x ; Tkx a Tk-rx)

*n-l *n-2 * n -1-) *1

n n n

(n)k

nk+l

Thus

P(S(x) has cycle of length r, x is not cyclic)

(31)
n (n)k

k-r+l n

14



But

P(S(x) has cycle of length r, x is not cyclic)

n
= E P(S(x) has cycle of length r, x is not cyclic, Un n u)

u=r

n
a E P(Sx) has cycle of length rix is not cyclic, U n u)
u-r

P(x is not cycliclU n = u) P(Un a u)

( u-1 u-2 u-(r-l) n-u p(U
ur u u-i u-ir-2) u-(r-l) n n

n

(32) = n-u P(U = u)
urnu nu=rfU T

Now (31) and (32) are equal for all r implying

n (n)k n (n)k n n
S= - U) E n P(Un =u)

k-r+ n k-r+2 n k unr nu u=r+l nu n

from which

(nI) u

(33) P(U u u - 1,2,...,n
n

From (33), P(U n) This is seen directly by noting
n

that U n n i.f.f. T is 1-1 and that there are n! such T

Harris offers an alternative development of (33) by decomposing the

cycle space of T and employing a convenient identity from Katz.

Using (33) we have the identity
i n (n) u

(34) n -- u a n
Uml 

nu

_



Taking the mean of U from (33) and equating to (13) we haven

the identity

n Wnu  1 n Wn u u2

(35) E -n-- E or n E(- ) - E(U)
u-l nU n u-l nU n

Continuing in this fashion, from (27) we have

n (n) n (n)

(36) E(U = (2u-l) u 2n - E lu or
n - n in,u-1 n u-1i n

E(U2) 2n - E(Ln)

and hence the identity

n (n)uU 3  2n2  n n (n)u  n u  2(37) n 2n2 - u
u=1 nu  u-i nu  ul nu

Note that n-1 E(U2 ) - 2
n

The exact distribution of V is obtained from U byn n

n
P(Vn - v) - E P(Vn - VIUn u) P(Un = u)

U='V

n (n)uu
(38) -E n(Ur'V) nU+l.

u-v n

But it is clear that u does not depend upon n . It is

Just the probability of exactly v cycles resulting from u cyclic

elements. In fact, we may show (Riordan p. 70-72) that

a(uv) - (-1) s(u,v)/u!

where s(u,v) are Stirling numbers of the first kind.

16



ct(1,1) a 1

a(2,1) a 1/2 a(2,2) - 1/2

O(3,l) - l/3 a(3,2) - 1/2 a(3,3) 1/6

More. generally ot(u,1) , (uu) - L and using the familiar recurrence

relationship for Stirling numbers of the first kind (Riordan p. 33)

U-1(39) G(u,v ) a U (u-lv ) + 1 a( u-l,v-I )

Rubin and Sitgreaves tabulate a(u,v) for u,v - 1,2,...,25, u < v

The distribution of V is obtained in a more complicated

form than (38) by Folkert using the aforementioned Katz identity.

Using (14) and (38) the identity (40) ensues

n (n)u n n (n)uuv
- = E n: (i,v)(4 0 ) r 1 u u r a -1,

U-1 U nu v- U-v n

in (n) u
0 u Z v a(u,v)

u-I n u n V-1

Next the exact distribution of T (equivalently S

n
P(Tnr = k) - Z P(Tn,r - kU n a u) P(Un - u)

I u-kr

n (n)uu

(41) Z 0 n(rku)" u+l
unkr n

17
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Now B does not depend on n . It is just the probability

of exactly k cycles of length r resulting from u cyclic

elements. It is not hard to show that

i 1

(41) B(rk,u) = -- k B(r,Ou-kr)
k!r

[w/r)
Since S(rOw) = 1 - E 0(r,k,w) and since 0(rO,w) I

k=l

when w < r , 0(rku) can be obtained recursively. Also

O(rl,r) = a(l,r) = 11r and 0(lr,r) = n(rr) = l/r!

It is apparent that with the exception of U , these exactn

distributions are a bit Inconvenlent. In the next section we obtain

* some simple asymptotic distributions.

In concluding this section we examine the expected length of

* a cycle denoted by KCL. We first compute the likelihood of any

particular cycle space configuration under a random T . If we

let m be the number of cycles of length t , £ = 1,...,n, and

let rn = n - EmIt = the number of transient states, then for

Em t < n

P(m L cycles of length I and m 0 transient states)

- P(mlm 2 , ... m nd

- -(,....,M21Un.ns o) P(U n-n-mo )

1 (n) n-UO(nUtO)

n-mo nao 2 " - 1

II M 100
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n! (n-rn0)

n-m0  mn n-S n-S +1

2, 0I t z T1 an 0

(,.en 'iy vector ,...,mn) such that m > 0 and

EmIt < ... the average cycle length for the cycle space configuration

it defines 's (Em,) - I EmtI•

Hence

(43) ECL - Z (Emt)-l Em • P(mlJm2,...,m n )

((m 1 ,m 23 ... ,mn)Emmt< ,mt>O}

Continuing we note that Emit is a value of Un  and EmL  is

a value of V and thusn

U
ECL - E (,).

n

Using the joint distribution of Un, V n  contained in (38), we

have

n n (n) u n u (n)u
(44) ECL" E E Ut (u,v EU 7 a(u,v

v-l u-V n u1 Val n

19
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The equality of the right hand sides of (43) and (44) provides

yet another identity. A more convenient expression for studying

FCL may be obtained using the recursion relation (39). That is,

n u (n) u
E(Vn) -E E v c(uv) U

n u-i V-i u+l

n u (n)
E E V[(u-l)(u-i,v ) + a(u-lv-I )J uU

U-i V-1 n

n (n)
E * ((u-i)E(vlu-l) + E(v+liu-1)}

u-i n

n (n) u  n (n)u
- E + E u E(YIU-I)

U-in u 1 nVn)

" E(- -) + - E n-U ) (V + nn "
U n n n Un

After some simplification we have

Vu 4(Un+l )Vn] +E(2) •E[ E( 1
n n Un

Using (35) we obtain

(45) E(1) E(nVn + Vn-Un)
n

whence

(46) ECL > n(E(UnV n + V n-Un)]

20



6. Asymptotic Results

Using Harris' idea (p. 1047) we obtain the asymptotic probability

density of U . Letting Wn = U n/ A and using (33) we may shown n

after some manipulation that W converges in distribution to an

random variable W having a Rayleigh distribution, i.e. the density

of W is

-w 2/2
(47) fw(w) - we , w > 0

P
This also establishes that U •1n
It is easy to show that

E(Wr) 2 r/2 [('+2) , r > -2
2

Thus for k > -2

E(nk/2 Uk) an k/2 n uk+l (n)u 2k/2 k+2
l U u+l .

u1l n

In particular from (35) we have

U l/*2n (n) uU 2  -1/2 n (n)u
(48) E(-) = n-1/2  u n --- WE( ) - /7-W

Vn u-l nU+l u=l n n

(offering a different verification of our limits for (12) and (13)).

Furthermore, in agreement with our remark after (37) we have

-1 n (n)uu3

u-1 nU+l

21



Expression (48) also implies that the expected number of

transient states approaches - as n I , i.e.

Un
E(n-Un) = In E(/n - - ) .

U
Additionally, var(-n ) * 2 - w/2 confirming that var(Un) n )

as noted after (28). As for var(Vn) , using (28), It is clear that

2 n 1 (n)r l(n )r+s

rwl hn r,sl

which is 
sn

E(V ) + E(U n )

< 2E(Un) since Vn (U n

Hence from (48) n- E(V 2 ) * 0 implying E(n-11 2V) * 0 andn n
thus that var(n-1/ 2Vn) * 0 . Similar computation leads to var(V) *

n n

E(UnVn)a E E r- E(Sn  S )rinl s-l n,r Sn,s)

From (10), (21) and (23)

22



(n)
r+s r Y

n

E( =0 ,r S, r+s>n
E(Sn,r ns 

s

(n)r (n)2r

(n)r

r rr nrr r~ , rsn

r nr r sr 2r > n

Hence

E(U Vn ) = E r- (n nnn r>l,s>l n r+S r= n r
__ r~l n

r+s<n

which may be shown to be

(49) < n E( 1 + log Un) + E(Un )
U
n

Upon dividing by n both terms on the right-hand side of (49)

approach 0 • For the first we use the boundedness of the argument

and (47) while for the second we use (48) again. As a result

n- E(Un Vn ) - 0 so that from (46) ECL P - .

We next argue that the asymptotic distribution of Tn,r  (i.e.
"n ) is Poisson with mean i/r The limits in (11) and (24)
r

encourage this possibility. It suffices to show that

(50) lim [k!rkP(T n  = k) - P(T n, r = 0)] - 0 * k 1,2,...
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From (40) and (41) we may write

1 n-kr (n) u+kr(U+kr)
P(Tn,r k) !rk 8(r,0,u)n~r Eu+kr+l

r u=0 n

Hence the left-hand side of (50) becomes

n (n) u n-kr (n) (u+kr)
lrn [ E B(r,,u) u u+kr 
ir Eu+l nu+kr+l

n u n u=O

n-kr (n)u  (n)u+kr n (n) uu

lim E (r,O,u)u( u+l u+kr+ ) + E B(r,O,u) u+l
n - e u=l n n u=n-kr+l n

n-kr (n)u+kr (n)kr(kr)- kr__ ___ __
kr E u+kr+l kr+lu=O n n

It is apparent that the limits of the second, third, and fourth

terms within the brackets are 0 . Since 8(r,O,u) < 1 and since

n (n)uu n-a (n)u 1lim E u lim E = 1
nu-1 u+l

n -, u=a n n u-1 n

for any fixed positive integer a , the first term also tends to 0

and we are done.

Summarizing, T converges in distribution to a random variablen,r

Tr such that

-i/r

P(T = t) e , t 0,1,2,....
r !

(The limiting Poisson distribution when r - 1 was noted at the

beginning of section 3.)
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It is well-known that if X" P 0(A) ,then E(X) k A k(see

e.g. Johnson and Kotz (1969), p. 90) from which

E(X k) E S~,)
J =1

where the S(k,j) are Stirling numbers of the second kind. Hence

k 0. k _(51) ECT ) * E S(k,j)r
n~r J-1

We calculate the left-hand side of (51) assuming n > k

E(T nr )k=r E( 1 E D i)

r- k! E 11(Dn k

Ilk iri

where Mlt=(.k 3k):ki > 0 Eki -k).

But if exactly m of the ki 1' 0 ,E U(D. P gie byr.. n,m,r gvnb

(29). Continuing then

EC k rk kk

where if denotes the subset of *on which exactly m of the k sare>O0. But the sum

over ift' is merely the number of ways of placing k objects into

n cells such that exactly mn are nonernpty. This number is

(n) m S(k,m) (Riordan, p. 92) whence

E(Tnr )k r-k E S(k,m)(n)m Pn~~
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Using (30) we have

k ,-k k
(52) lim E(T n,r) r E S(k,m) E n(ml...,m

* n m=l ~1 M.
I~m jj

[(r-l)fjl[ v (r-m!] - 1

i-i

Denoting the sum over Smr by Ar,m and equating right-hand

sides in (51) and (52), we find the identity

k k-r k
(53) E S(k,m)rk - E S(k,m)Ar

m=l m=l ,m

Note that AI, m = 1 reduces (53) to a triviality.

7. Summary

In the previous sections we have rather thoroughly described

the behavior of the cycle space of a randomly selected transformation

on a finite set. Amongst the most interesting conclusions are the

"large set" results. We have demonstrated that with increasing set

size

(i) the expected number of cyclic states -w

(ii) the expected number of transient states *

(iii) the expected number of cycles *

(iv) the likelihood that any particular state is cyclic * 0

(v) the expected number of cycles of length r * i/r

(vi) the expected number of states on cycles of length r 1

(vii) the expected cycle length .
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As a final remark, suppose the set of transformations is

restricted to be into a subset of X , say X' , having n' elements.

After the first transition, all of the results of the preceding

sections apply with n' replacing n

References

Cull, P. (1977). "A Matrix Algebra for Neural Nets" presented at the
International Conference on Applied General Systems Research,
August 1977, Binghampton, N.Y.

Folkert, J.E. (1955). "The Distribution of the Number of Components
of a Random Mapping Function" unpublished Ph.D. Dissertation,
Michigan State University.

Gontcharoff, W. (1944). "On the Field of Combinatory Analysis"
Bull. de l'Academie des Sciences de U.R.S.S., Serle Mathematique
Vol. 8, p. 1-48.

Harris, B. (1960). "Probability Distributions Related to Random
Mappings" Annals Math. Stat., Vol. 31, No. 4, p. 1045-1062.

Johnson, N. and S. Kotz (1969). Discrete Distributions, Houghton-
Mifflin, Boston.

Rubin, H. and R. Sitgreaves (1954). "Probability Distributions Related
to Random Transformations.on a Finite Set" Tech. Report #19A,
Applied Math. and Stat. Lab., Stanford University.

Riordan, J. (1958). An Introduction to Combinatorial Analysis, J. Wiley
& Sons, New York.

27

I



UNCLASSIFIED
s[CURITY CLASSIFICATION OF THIS PAGE (Whiom Date _ _ _ __r_

REPORT DOCUMENTATION PAGE 33 uD MPrLucT OsBIP"rRZ COMPUZTINiG FORM

.I2. GOVT ACCESSION O. 3T TNM CATALOG NUMMER

4. TITI.E (nd lulile) L TYPE OF REPORT & PI/OD OVE

ON THE CYCLIC BEHAVIOR OF RANDOM TRANSFORMA- TECHNICAL REPORT
TIONS ON A FINITE SET 1. Pasponmw ORtG. REPORT NmUsMe

7. AUTNOR(@) 0. CONTRACT OR GRANT NUM*ElW&O)

ALAN E. GELFAND N00014-76-C-0475

S. PERFORMING ORGANIZATION NAME ANO ADDRESS i0. PROGRAMEEMET. P C., TASK

Department of Statistics 
NR-042-267

Stanford University
Stanford, CA 94305

It. CONTROLLING OFFICE NAME AND ADORESS 12. REPORT OATE

Office Of Naval Research AUGUST 4, 1981
Statistics & Probability Program Code 436 13. NUMBER OF PAGES

Arlington, VA 22217 27
14. MONITORING AGENCY NAME & ADORESS(Il difI..m# km ContrllinOillJ IS. SECURITY CLASS. (*I ale ropeoU

UNCLASSIFIED

ISa. OECL ASSI ICATION/OWNGRADING
SCHEDULE

Is, OISTRIBUTION STATEMENT (of &his Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

17. DISTRIBUTION STATEMENT (61 the abotelI mmredb l. gieA 2. It lleIOCI, km PIlel0)

1I. SUPPLEMENTARY NOTES

1t. KEY WOROS (Colntinue OR revrse ide If i0*i n7Y end Idenify 61 lei min lw)

Random transformations; cycle; cycle length; exchangeable random

variables; finite state systems.

20. AeS1 RACT (Continue an reveee Idle It noc.er n d ido lirwfIt by I8o9 Rumbwo)

PLEASE SEE REVERSE SIDE.

DD, I0N13 1473 EoITION Or I Nov ,s is oBsoLT-e UNCLASSIFIED
S/N 0102- LF- ). 4- 1601 SECURITY CLASSIFICATION OF TNIS PAGE (. ten D7 i, i



UNCLASSIFIED
SICUmTV CLASUPICATIO11 OP THIS PA641 lWhm Doe DMeuQ.

#305

ON THE CYCLIC BEHAVIOR OF RANDOM TRANSFORMATIONS

F ON A FINITE SET

Let X be a finite set of elements and let a be the set

of all transformations from X into itself. For T c a we take

Tk to have its usual meaning. Starting from a given x c X

consider the sequence Tx, j = 0,1,2,..... Since X is finite

the sequence T. must eventually encounter an element it had shown

before. Thereafter it must repeat this intermediate sequence of

elements. Such a sequence is called a cycle and the number of

distinct elements in the cycle is called the cycle length. For

a given T, not all x's must be on a cycle and, moreover,

starting from differing x's may lead T into differing cycles.

Hence we have the notion of a cycle space for T.

It is the purpose of this paper to discuss a collection of

exact and asymptotic results describing the cycle space of a

randomly selected T. In particular, we examine such variables

as the number of elements on a cycle of a specified length, the

number of elements on cycles, the number of cycles and the length

of a cycle.

. :" " "UNCLASSIFIED

i ' .A&5.UCA-C, 2V S .&3...be Zme £Attor*



Apw


